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We examine possible nematic to smectic and nematic to columnar phase transitions for binary mix-
tures of perfectly parallel aligned hard cylinders with equal diameters but different lengths by using the
free-energy functional within the third virial coefficient approximation. The regions of stability are lo-
cated and the phase diagram of the system is calculated for different values of the ratio of the two cylin-
drical lengths. The nematic phase can directly transform into the columnar phase for values with a
length ratio smaller than 0.635, showing that dispersity in molecular length can stabilize columnar

versus smectic ordering of these mixtures.

PACS number(s): 64.70.Md, 61.30.Cz, 61.41.+¢

I. INTRODUCTION

The system of monodisperse hard rods is a simple mod-
el that is used extensively in both theoretical calculations
and computer simulations to represent the molecules
comprising liquid-crystalline materials [1]. Traditionally,
the structures of liquid-crystalline states are categorized
according to the properties of the orientational and spa-
tial order of the molecules [2]. The evidence that hard-
core repulsions between rigid-rod molecules play an im-
portant role in the formation of orientational order was
furnished originally by the Onsager theory [3], and has
since been shown by many theoretical and experimental
studies [4]. It has also been demonstrated that for mono-
disperse hard rods the effects of excluded volume interac-
tions associated with the ends of the rodlike molecules
can balance out translational entropy effects, thereby sta-
bilizing smectic-A4 (Sm- A) order [5-7]. A recent Monto
Carlo (MC) simulation of binary mixtures of hard sphero-
cylinders with different lengths has further shown that a
nematic-columnar transition is possible for sufficiently
large length ratios [8]. This is an interesting observation,
since in several examples highly concentrated bipolymer
solutions exhibit a stable columnar (C) phase [9-11].

In this paper, we analyze the formation of spatially or-
dered liquid-crystalline phases using the systematic virial
expansion of the excess free-energy functional for a
binary system composed of aligned hard, right circular
cylinders with the same diameter D but different lengths
L, and L,. The Onsager theory established that for very
thin rigid-rod particles the isotropic-nematic transition
occurs at very low volume fraction, and the virial expan-
sion may be truncated after the second virial term, lead-
ing to an exact theory for infinitely thin particles [1,3].
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The dimensional arguments used by Onsager [3] and oth-
ers [5,6] make it clear that phase transitions between
mesophases in hard-rod systems, such as the
nematic—smectic- 4 transition, occur at high densities
just below the close packing density even for thin parti-
cles. The low density second-virial approximation is no
longer accurate. Since all virial terms are of same order
for closely packed rods, more terms should be required in
the free-energy expansion. In practice, however, the cal-
culation of the virial terms beyond the fourth order term
is extremely difficult; one usually resorts to using compli-
cated diagrammatic-expansion techniques [5]. Mulder
[5], in his studies of the nematic-smectic transition for
monodisperse hard parallel cylinders, takes into account
the third- and fourth-order terms and locates the transi-
tion by a bifurcation analysis, which gives a result in
good agreement with computer simulations [7,12]. The
addition of the third-order term to the free energy gives
significant improvement on the bifurcation density for
monodisperse hard parallel cylinders [5] and sphero-
cylinders [6]. However, the addition of the fourth-order
term gives only a small correction [5]. In the following,
we generalize the method of free-energy virial expansion
of Mulder to investigate binary mixtures of hard parallel
cylinders. The virial expansion, truncated after the
third-order term, is used to determine the nematic-
smectic and nematic-columnar phase transitions.

In this paper, the stabilities of the smectic and colum-
nar phases are examined. A number of other complica-
tions are not considered in our analysis. First, when the
number density increases, it is presumed that several
solid phases can be established [2,7,12]. This
phenomenon is taken into account in the MC analysis for
the binary mixture of perfectly aligned hard sphero-
cylinders [8]; we are not aware of any analytic calculation
that accounts for these solid phases. Second, the possibil-
ity that the spatially ordered liquid-crystalline structure
may have modulated states other than the Sm-4 or C
states is not examined. For instance, the smectic-C struc-
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ture exists widely in other liquid-crystal materials. In
principle, the free energy should be minimized subject to
all possible modulated structures. Finally, we have used
cylindrical molecules in our calculation, while Stroobants
has used spherocylinders in his MC analysis [8]. The
shape difference of these two types of molecules may re-
sult in different phase behavior. It is therefore desirable
to perform a MC simulation for hard cylinders in the
same regime of the phase diagram that interests us here.
A similar calculation of the present model for hard
spherocylinders would require much more work [6].

II. BASIC FORMALISM

A. Free energy

The phase transitions between the nematic state and a
spatially ordered liquid-crystalline state, such as the
smectic or columnar state considered here, are driven
from a competition between the translational entropy and
intermolecular interactions favoring spatial ordering. In
comparison, the isotropic-nematic phase transition is in-
duced when the excluded-volume interaction, which
favors orientational order, becomes more important than
the orientational entropy term in the free energy. Owing
to the high degree of orientational ordering in Sm- A4 and
C states, it should suffice to represent the molecules by
perfectly aligned ones. Such a simplification enables us to
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write the number density distribution, which otherwise is
a function of coupled variables () and r, as a product of a
S-function distribution for the orientational degree of
freedom, and a spatial modulation function for spatial or-
dering. Based on this treatment, the free energy can be
obtained according to the standard theory of classical
fluids.

Consider the system of a binary mixture of perfectly
aligned hard cylindrical molecules with different lengths
L, and L, but the same diameters D. The free energy of
this system with volume V can therefore be treated as a
functional of the number density distribution functions
po(r), where o labels cylinders of type o(=1,2), respec-
tively. Choosing the z axis as the orientational-alignment
direction, we can write the free energy F, scaled by the
Boltzmann factor B=(kT)"!, as a sum of the ideal-gas
contribution BF¥® and the nth-order virial coefficient
terms E, [13]:

BF[p1,p,1=BF"**[p,,p,]1—E;3[p1,p;]1—E3[p1,p;]—

where

BFndeal[p (r), Pz( ) fdrpa [1117»3 U(!‘)“‘l] , (2)
2

o= 1

with A being the thermal de Broglie wavelength, and

Elp0pan)] =5 3 [dndnf o o, (51— 52)p, (1100, (5) &)
‘71“2

E;3[py(r),py(r)]= 2 fdfldfzdl'sfa o, r2)f0203(r2_r3)fa]al(rii_rl) al(rl)paz(IZ)pGJ(l'}) . 4)
(7 (72(73

In the latter expressions, f,, stands for the Mayer func-
tion for aligned hard cylinders:

foo(D)=—O(D2—x2—yHO(L,, —lz|) (0,0'=1,2),

(3)
where O is the Heaviside step function, and

L,y =(L,+L,)/2. )

The virial coefficient terms in Egs. (3) and (4) are related
to the sum of all connected irreducible diagrams with n
black p, circles and f,,- bonds. Expressions of the virial
coefficients for spatially modulated one-component hard
cylindrical molecules (capped and uncapped) can be
found in Refs. [5,6].

B. The stability of the nematic phase

In this section we obtain a general expression for the
static structure function S(q) by considering Sm-4 and
C perturbations from a nematic state, which is useful in
exploring the stability of the nematic phase. For this

purpose, we introduce the Fourier transformations of the
number density functions,

> p.(qlexplig-r) (0=1,2), (7
q

where p, are coefficients of the different Fourier modes,
obeying the relation

polr)=

pa(q)=p,(—q) . (8)
Note that the average number density over one period,
Po» is related to the coefficient of the zeroth mode:

Po=Ps(0) .

To quadratic order in p,(q), the free energy can be writ-
ten as

BAF:BF _BFnematic

=1 2 Zh. @B, @4, 0@t )

7192 9
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where 4, ,, is the element of the marix

a) 1—p,C11(q) =V pp2C12(q)
A =S =
@=54= | omCa(@  1-p,Cnla)
(10)

with C 00, being the Fourier transformation of the direct

correlation function [14] obtained from the virial terms in
(1).

The onset of a stable modulated phase with wave vec-
tor q is signaled by the bifurcation condition

det[ 4(q)]=0. (1n

In general, for a mixture of two different types of mole-
cules, such an equation has two possible roots for a given
q, which correspond to the condition A(q)=0 and
A'(q)=0, respectively, where A(q) and A'(q) are two ei-
genvalues of the matrix in (10). Throughout this paper,
we assume that A(q) is always the smaller eigenvalue of
(10) so that the stability limit is determined by A(q)=0
for a given q; any complications caused by the A'(q)
mode are neglected.

For later convenience, we introduce a dimensionless
average density

Ne=1aD’L,p, (0=1,2), (12)

corresponding to the packing fraction of type-o mole-
cules, and scaled wave numbers @, =¢,D and Q”=q”I_.
with L=L(L,+L,) being the average length. The
difference in lengths is represented by the ratio
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which serves as a parameter to characterize the difference
in the two types of molecules. Note that =0 is the limit
L,=0and a=1 is the limit L, =L,. Our main interest is
in those systems with 0<a = 1.

In the following, we shall investigate possible N —Sm- 4
and N-C transitions using the bifurcation condition. The
Sm- A modulation is associated with longitudinal bifurca-
tion wave vectors g™ “=g k and —q*™“. Equation (7)

for p,(r) therefore becomes

Po(r)=p,+2|p, ilcos(qz+@, ) (6=1,2), (14)

where we have written ﬁa(qsm'A)=Iﬁa,1|cxp(i<p,,,1).

Higher-order harmonic contributions to (14) are not im-
portant for the bifurcation analysis and are thus neglect-
ed.

The C modulation is characterized by the transverse
wave vectors

qf:qli’
1 ., V3
q2C=_E'qll+ i
1 V3

q§=— qui— Tqij ,

and —qf, —q§, —q§. Therefore p,(r) is modulated in ac-
cordance with the two-dimensional hexagonal order

3

Po(r)=p,+2|p, ;| 3 cos(qfr+e, ;) (c=1,2), (15
i=1

where we have used the symmetry conditions of a hexag-

onal lattice to obtain the same coefficients and phases for

different qF.

_ 2L, Using this notation we can write the coefficients 4,
a=L,/E=—"""— 13) i B (O 12
L,+L, in Eq. (9) as
J
A‘,lt,z(q)=5‘,|(,2—\/p,,]p,,2 fdrfalaz(r)cos(q-r)+ fdffdl"2Pa3falaz(f)faza3(f')fa3al(1'_1")COS(Q'I') . (16)
73
—

The explicit expressions for g=q5™4,q€ can be found in 3 |4n 4n

Appendix A. 36 Ay Ay =0. (18)

In order to determine the relative phase @, of the
Fourier components p,, we minimize F with respect to
@,,1» Which leads to the phase difference @; ,—@; =7.
By making use of the above result, we can absorb these
phases into order parameters by rescaling the order pa-
rameters as ¢, 1(q)~p, 1(q)cos(@, ;).

Summarized briefly, the loss of stability of the nematic
phase is determined by

All A12

=0, 17)
A21 A22

and

Solving these two equations yields the stability limit
m(Q) and 71,(Q) for a given Q, since 4, are functions
of n,, 115, and Q in general.

III. PHASE TRANSITIONS

To locate the N-Sm-A4 and N-C transitions we must
consider the fourth-order Landau expansion of the free-
energy difference in the relevant order parameters. For
consistency, we retain in the expansion the Fourier
coefficients up to the second harmonics. For the Sm-4
modulation, the number density p,(r) is given by
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Po(r)=p,+2|p, iIcos(q,z + @, )
+21p,,slcos(2gz + @, ,) (0=1,2), (19)
and for the C modulation,

3
Po()=p,+2|p, | 3 cos(qf-r+g, )

i=1
6
+20p, 2 3 cos(qf r+g,,) (0=1,2). (20)
i=4

In Eq. (20), the three next-shortest reciprocal-lattice vec-
tors, characteristic of the plane hexagonal lattice, are
chosen as

c_3 . V3 .
%“5‘111__2“‘11] ,
c 3 . V3 .
QS”_E‘ILI'TQLJ )
qg:‘/?"hj’

By using the selection rules and carrying out the in-
tegrations in the second and third virial terms, we obtain
the fourth-order Landau expansion of the free-energy
difference:

T = z AUIUZ(Q)¢01,1¢(72,1

919,

2
- 2 BO’IUZGJ(Q)(bUl, 1¢02, 1¢0}.2

100,04

+ E AUIUZ(CIQ)¢:7],2¢02,2

719,
€2 4 3)
+3 ¢, TAFY, 21)
o Po

where the cubic invariant term AF is zero for the Sm-
A phase,

AF¥=0, (22a)
and nonzero for the C phase
2
AF(S):MS\/—g 2 BalazaJ(Q)(bol,l(ﬁaz,ld'a],l ’ (22b)

010,03

due to q;+q,+q;=0 for the C modulation. In Eq. (21)
¢;=2 (Sm-A), V'3 (C), and ¢, =+ (Sm-4), 2 (C) are con-
stants from the translational entropy term. The phase
@, as in the case for the phase @, |, is determined by
minimizing the free energy with respect to @, ,, which
gives the condition @, , —@,; ,=m. The order parameters
#,,1 and @, , are related to the Fourier coefficients p, ,
and p, , in Egs. (19) and (20) by
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1

bon =
' Po

|Po.nlcos(@, ) (0=1,2,n=1,2), (23)

where we have scaled the order parameter |p, ,| in a
form that will be more convenient in the actual calcula-
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tions. The coefficients 4,,.(Q) can be found in Appen-
dix A, while the coefficients B, 5,0,(Q) can be found in
Appendix B.

As explained in the preceding section, the matrix 4,
has two eigenvalues A and A’, chosen so that A <A’. We
can assume that the phase behavior is mainly determined
by the A mode since A’ is always positive. Keeping this in
mind, we can diagonalize the matrix A through a Hermi-
tian matrix and write

byn=B,(Q)P, (c=1,2,n=1,2), (24)

where ®, are the eigenvectors corresponding to the A
mode. Coefficients B,(Q) and A(Q) can be found in Ap-
pendix C.

Using these definitions of coefficients, we finally arrive
at the free energy

BAF

CzB‘:,(Q) 4
N o

=MQ)PI—a (Q)P}+A(c, QP2+ 1

a
2
(&5

- By 0.0,(Q)B,,(Q)B, (Q)
019,93

XBUB(CIQ)Q)%CDZ , (25)
with

a(Q)=0 (26a)

for Sm- A4, and
2
( )—_———:-
aQ=-r= 3

010,03

B, ,.,.(Q)B, (Q)B, (QB, (Q)

(26b)

for C. Equation (25) is a typical Landau expansion in the
order parameters @, and ®,. The latter can be related to
the former by minimizing AF with respect to ®,. Taking
OAF /9P, =0 yields

1
(DZZ 2 B010203(Q)Ba‘(Q)

clMC]Q)“I"z”x
XB(,Z(Q)BO}(C‘Q)d)? , 27
thus the free energy becomes
B —2010i-a (@i +b Q)01 28)
with
c B‘,’;(Q)
b(Q)=3 >
s Po
1
_—— B, ., ..(Q)B,(Q)B, (Q)
TYY z 00,(@)B, (Q)B,(Q
2
xBai(le)J : (29)

When a (Q)=0, as in the case of the N —-Sm- 4 transition,
the free energy (28) describes a second-order phase transi-
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tion whose phase boundary is directly related to the con-
ditions (17) and (18). When a (Q)F0, as in the case of the
N-C transition, the free energy (28) describes a first-order
phase transition. The stability conditions (17) and (18)
only determine the stability limit; the actual phase
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2
a“(Q)

A =MQ) ——=-.
a(Q)=MQ) 4b(Q)

Based on these procedures, we have studied possible

nematic-smectic and nematic-columnar phase transitions.

The phase diagrams displayed in Fig. 1 show the regions

(32)

boundary is fixed by the condition AF =0 and S ; .
_ . of stability of the nematic, smectic, and columnar phases.
O0AF /3Q =0, or effectively, X . ... . .
The nematic-smectic transition is continuous and the
Ag(Q)=0, (30)  phase boundary is represented by the dotted curves. The
first-order nematic-columnar phase transition is
and represented by the solid curves in Fig. 1.
5 For completeness, we have also compared the free en-
a—keﬂf, Q)=0, (31)  ergy of the Sm-A4 and C phases to obtain the first-order
Q Sm-A4 -C transition boundary. We do not claim that
where such a comparison will produce the exact phase bound-
05 . . ; ; 0.5 . ; . .
(a) (b)
0.4 } 8 0.4 f
72 a=1.0 72 a=0.8
03+ E 03| T _
: Sm
g Sm
0.2t . 1 0.2t N
0.1 | h ) 4 0.1 F i
0.0 I n L 1 0.0 ! | L ‘ i
0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5
m m
0.5 . ; . . 0.5 ; . — -
(c) (d)
04 g 04 ]
72 S Sm a=06 mooh a=04
03 - 1 03 Sm ]
02+ N g 02+ ]
0.1 1 0.1 + J
0.0 L L L L 0.0 1 L 1 L
0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5
m m
0.5 . . ; .
(e)
0.4t .
72 a=02
03t )
Sm
02 | )
0.1t N . ~ ]
0.0 L L L 1
0.0 0.1 0.2 0.3 0.4 0.5

m
FIG. 1. Phase diagrams in the 7,-7, plane for binary mixtures of hard parallel cylinders with the same diameters for a=1.0 (a),
0.8 (b), 0.6 (c), 0.4 (d), and 0.2 (e), respectively. Here 7, and 7, are the dimensionless average densities defined in Eq. (12), and the ra-
tio a=2L,/(L,+L,) defined in Eq. (13). The solid curves represent the first-order nematic-columnar and smectic-columnar transi-
tions. The dotted curves represent the continuous nematic-smectic transitions.
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ary between the Sm- 4 and C phases; the free-energy ex-
pansion (27) may fail to be accurate, since higher-order
terms should become important away from the N -Sm- 4
and N-C stability limits. Nevertheless, this comparison
gives us a rough indication of the Sm- 4 — C phase bound-
ary.

The binary mixtures of hard parallel cylinders exhibit a
strongly a-dependent phase behavior which must be at-
tributed to the difference in packing properties between
the two kinds of rods. In the limit of @=1, the phase
behavior follows from the model of monodisperse hard
rods. The nematic phase is stable for n=m7,+7,<0.357,
while the smectic phase is stable for > 0.357. There is
no region of stability for columnar phases. The calcula-
tion shows that the nematic-columnar transition lines are
always above that of the nematic-smectic transition for
a<0.777. It appears that at this point
(¢=0.777,L,/L,=0.635) the nematic phase can direct-
ly transform into a columnar phase. The nematic-
columnar phase transition is weakly first order because of
the small coefficient a in the expansion. The size of the
stable columnar region is also ¢ dependent. The colum-
nar phase region becomes wider as a decreases from
a=0.777, but after a ~0.4 that region becomes narrower
as a decreases.

The nematic to columnar transition density exhibits
weak a dependence ranging from 7;+7,=0.43 for
a=0.78 to 17;+1,~0.39 in the small a limit, while the
nematic to smectic transition density exhibits strong a
dependence as seen from the five examples given in Fig.
1. A sharp decrease of nematic-smectic transition density
occurs for small a.

IV. DISCUSSION

Our simple model system of binary mixture hard paral-
lel cylinders exhibits a particularly interesting phase
behavior compared to the corresponding monodisperse
systems. On the basis of packing effects due to short-
range repulsions, it is shown that the theory, accurate up
to the third virial approximation, can be used to study
the stability of the nematic phase against smectic and
columnar perturbations for binary mixtures of hard rods.
The location of the smectic-columnar transition can also
be roughly estimated. We are unable to demonstrate that
the smectic or the columnar phase is stable with respect
to a crystalline solid or a more ordered smectic meso-
phase, which is beyond the scope of the current work.

In our calculation, the diameters of the two types of
cylinders are assumed to be the same. A possible way of
checking some of these results experimentally would be
to determine the structures of the liquid-crystalline
phases of, for example, a binary solution of rigid-rod-type
polymer molecules of two different polymerization in-
dices. At present, a direct comparison with computer
simulation of binary mixtures of perfectly aligned hard
rods is not possible because the only result available is for
perfectly aligned hard spherocylinders [8]. It is reason-
able that our theoretical phase diagrams are different
from that obtained by Stroobants [8] since the latter is for
the binary system of spherocylinders. However, there is

SHI-MIN CUI AND ZHENG YU CHEN 50

one common characteristic in both models, i.e., the
nematic phase can directly transform into the columnar
phase for certain values of the length ratio, showing that
dispersity in molecular length favors columnar order over
smectic order.

In the above calculation, we have let the diameters of
the two types of molecules be the same. If the actual ex-
perimental system is composed of two different types of
molecules, rather than the same type of molecules with
different polymerization indices, the effect of the
difference in diameter must be examined. We have also
performed calculations for a binary mixture of aligned
hard cylinders with different diameters but the same
length. In this case, the nematic-columnar transition
curves are always well above the nematic-smectic ones.
The columnar phase is never stable. There is only a
direct nematic to smectic phase transition as shown in
Fig. 2. This result is very different from those obtained
for cases where the two types of cylinders have the same
diameters but different lengths.

Since our theory is based upon a model of perfectly
aligned hard rods, fluctuations of the direction of rods are
completely ignored. Only at extremely large densities is
this assumption asymptotically valid. The phase transi-
tion densities considered above have large but finite
values. To what extent the coupling to the orientational
degree of freedom would affect the phase transitions from
the nematic phase to spatially ordered liquid-crystalline
phases is still an unresolved problem even for mono-
disperse systems [6].

We have also neglected contributions of the fourth-
and higher-order virial contributions. As shown in the
study of the N-Sm-A4 phase transition of monodisperse
system of rigid rods, these high-order terms also contrib-
ute weakly to the free energy of the phase transition. The
phase diagrams in Fig. 1 could be affected by these high-
order virial contributions. However, it is very difficult to
estimate the contribution of these high-order terms for
the systems considered in this paper.

0.0

0.0 0.1 0.4 0.5

FIG. 2. Phase diagrams in the 7;-71; plane for binary mixtures
of hard parallel cylinders with the same lengths but different di-
ameters: B=0.8, 0.6, and 0.4, respectively. Here the dimen-
sionless average density 7,, is defined as 7, =mLD2p, /4 and the
parameter S is defined as 8=2D,/(D,+D,), D, and D, being
the diameters of rigid rods of types 1 and 2, respectively. The
dotted curves represent the second-order N-Sm_ 4 transition.
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c(Q)=2folrer0(Qr)|1——1l; ’ 1——;; —cos™! 1—’72 ] (A3)
Here Q =q,D.

APPENDIX B: COEFFICIENT 30102,3 IN EQ. (23)
In this appendix the detailed expressions for Bal,,z,,]( Q) are given:

By 0.0, (Q)=[8; 4.8, 5. Co o0 (D1/1/ Py, - (B1)
For Sm- 4

Co 0,0, @=—(p,p, )P, [ [drdr'f, , (¥ —1)f ., (D)f, , (F)coslqy(z +2)], (B2)

and the explicit expressions are given by

C111=32cn?[cos(Qa)—cos(2Qa)]/[a*Q?] ,
Ci12=32cnm,{cos[Q(2—a)]—cos(2Q)} /[a(2—a)Q?] ,
Ci21=Cy1y =16cm7"*n}?{cos(Q)+cos[Q (2a—1)]—2cos[Q (a+1)]} /[&*/2(2—a)!/2Q?] ,

(B3)
C12=Cy1,=16cn3*n3"*{cos(Q)+cos[Q (3—2a)]—2cos[Q (3—a)]} /[a'2(2—a)*/?Q?],
Cy1 =32cmm,[cos(Qa)—cos(2Q)]/[a(2—a)Q?] ,
Cy=32cm3{cos[Q(2—a)]—cos[2Q (2—a)]} /[(2—a)?*Q?] ,
with ¢ =1—3V3 /4. For C,
Co010, @ = (P00, 0o, [ [drdr'f, o (¥ —0)f g0 (1) 4 g (£ecos(qf r+a5r) , (B4)

and the explicit expressions are given by
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Cy1y =487ic(Q) ,
Cip=16nm,(4—a)c(Q)/(2—a) ,

Cin =C2“=16n§/2né/2(4—a)c(Q)/[a(z—a)]“z ,
C10=Cy,=1691"9322+a)c (Q)/[a(2—a)]'/?,
Cypy=16mm,(2+a)c(Q)/a ,

Cppy=4875¢(Q) ,

with

c(Q)=f01r dr Jo(Qr) {1—% [r

6
1TQ cos ™ l(r/2)

m

where J, and J, denote the zero- and the first-order
Bessel function, respectively.

APPENDIX C:
COEFFICIENTS B,, B,, AND A IN EQ. (26)

The explicit expressions for the coefficients S,(Q),
B,(Q), and A(Q) are given by

BiQ@)=A4,(0)/{ 415(Q) 4, (@) +[MQ)— 4 (D2,
(C1)

SHI-MIN CUI AND ZHENG YU CHEN

dO[r cos6+(1—rsin?0)'/?1J, {Q[r cos@+(1—rZsin6)!/?]} l ,

(BS)

£ -1r
+ QJI(Q)cos 5

Br(Q)=[MQ)— 41(Q)]/{ A,(Q) 4,5, (Q)
+[MQ)—‘ An(Q)]Z}l/z ,
(C2)

MQ):(AH(QH‘ Alz(Q)'_{[An(Q)“‘ Azz(Q)]z

+44,(Q)4,,(Q)1V4) /2.
(C3)
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